PREPARATION OF $\mathrm{V}_{\mathrm{a}} \mathrm{M}_{2-\mathrm{a}} \mathrm{O}_{4}(M=\mathrm{Nb}, \mathrm{Ta} ; 1 \geq \mathrm{a} \geq 0.2)$ WITH DIFFERENT OXYGEN CONTENTS

M.T.Casais ${ }^{1}$, I. Rasines ${ }^{1}$, A. Arcoya ${ }^{2}$ and X. L. Seoane ${ }^{2}$
${ }^{1}$ INSTITUTO DE CIENCIA DE MATERIALES, C.S.I.C. SERRANO 113, 28006 MADRID, SPAIN
${ }^{2}$ INSTITUTO DE CATALISIS Y PETROLEOQUIMICA, C.S.I.C. CAMINO DE VALDELATAS S/N, CANTOBLANCO, 28049 MADRID, SPAIN

This paper describes the thermal behaviour of various oxides of pentavalent V and Nb or Ta in different dynamic hydrogen atmospheres. Previous studies of the phases obtained by heating mixtures of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{M}_{2} \mathrm{O}_{5}(M=\mathrm{Nb}, \mathrm{Ta})$ in air lead to (i) preparation of VTaO from both oxides for the first time, (ii) proof of the existence of the solid-solutions $\mathrm{VM}_{m} \mathrm{O}_{5 / 2(m+1) \text {, and (iii) proof that }}$ the materials described as NbVO_{5} and β-TaVOs are really mixtures of $\mathrm{VM}_{9} \mathrm{O}_{25}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$. Reduction of VMO5 gives monophasic rutile-type VMO_{4} from $650^{\circ} \mathrm{C}$. Reduction $\mathrm{VM}_{2} \mathrm{O}_{7.5}, \mathrm{~V}_{3} \mathrm{M}_{17} \mathrm{O}_{50}$ and $\mathrm{VM}_{9} \mathrm{O}_{25}$ at $1000^{\circ} \mathrm{C}$ leads to monophase non-stoichiometric $\mathrm{V}_{\mathrm{a}} \mathrm{M}_{2-\mathrm{a}} \mathrm{O}_{\mathrm{y}}$ only for $M=\mathrm{Nb}$.

Keywords: solid-solutions, V and Nb or Ta oxides

Introduction

Although several authors [1-3] have paid special attention to the oxides VMO_{s}, when we tried to prepare these oxides various results made it necessary to repeat an early investigation [1] in order to study the phases produced by heating mixtures of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{M}_{2} \mathrm{O}_{5}$ in air. For this reason the present investigation had two aims: to elucidate the nature of these phases, and to study their reduction carried out in several dynamic hydrogen atmospheres.

To date VNbO_{5} has been obtained [4] by sol-gel methods and $\mathrm{VTaO}_{5} \mathrm{~h}$ as only been synthesized [3] by solid-state reaction from a mixture of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{2} \mathrm{Ta}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$. For intermediate members of the isomorphous series $\mathrm{VM}_{\mathrm{m}} \mathrm{O}_{5 / 2(\mathrm{~m}+1)}$, two have been described previously [5, 6]. The rutile-type compound VNbO_{4}, with the metals in a lower oxidation state, has been known for some time [7] but this was prepared from VO_{2} and NbO_{2}.

Experimental

We prepared mixtures of reagent grade $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{M}_{2} \mathrm{O}_{5}(M=\mathrm{Nb}$, Ta) with different V: M molar ratios. These mixtures were ground, weighed and heated in air at increasing temperatures. After each thermal treatment, the products were weighed, re-ground and identified by X-ray powder diffraction. VTaO_{5} was prepared by heating mixtures with $\mathrm{V}: \mathrm{Ta}$ molar ratio equal to $1: 1$ at $640^{\circ} \mathrm{C}$ for 20 hours, and heating again at $740^{\circ} \mathrm{C}$ for 20 hours. The Nb -containing samples with V: M molar ratios of $1: 2,1: 5.6$ and $1: 9$ were heated at $640^{\circ} \mathrm{C}$ for 20 hours, $740^{\circ} \mathrm{C}$ for 20 hours and $750^{\circ} \mathrm{C}$ for 10 hours; those with $M=\mathrm{Ta}$, at $640^{\circ} \mathrm{C}$ for 20 hours, $740^{\circ} \mathrm{C}$ for 20 hours, $750^{\circ} \mathrm{C}$ for 20 hours, and three times at $900^{\circ} \mathrm{C}$ for 6 hours.

The X-ray powder diffraction study was performed using a Siemens Kristalloflex 810 computer-controlled diffractometer, a D-500 goniometer provided with 2θ-compensating slit and graphite monochromator, and $\mathrm{CuK} \mathrm{K}_{1}$ radiation with $\lambda=1.5405981 \AA$. Patterns for identification purposes were made at a scanning rate of $2^{\circ} 2 \theta \mathrm{~min}^{-1}$. The more accurate d-spacing measurements were performed at $0.1^{\circ} 2 \theta \mathrm{~min}^{-1}$ using tungsten as internal standard.

Thermal investigation of the various oxides of vanadium and niobium or tantalum was carried out in two kinds of dynamic hydrogen atmospheres: using pure hydrogen or a mixture of 5% hydrogen and 95% argon. In both cases the flow was $200 \mathrm{ml} \cdot \mathrm{min}^{-1}$. A Mettler TA 3000 system with a heating rate of $300 \mathrm{deg} \cdot \mathrm{h}^{-1}$ was used.

Results and discussion

Thermal stability of VTaO_{5}

Investigation of the phases produced by heating mixtures of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{M}_{2} \mathrm{O}_{5}$ in air allowed definition of the production route for VTaO_{5} by solid-state reaction of $\mathrm{V}_{2} \mathrm{O}_{5}$ and $\mathrm{Ta}_{2} \mathrm{O}_{5}$ in molar ratio $1: 1$. VTaO_{5} crystallizes in the orthorhombic system with $a=11.860(4) \AA, b=5.506(4) \AA$, and $c=6.924(3) \AA$, and is stable up to $900^{\circ} \mathrm{C}$; however if heated at this temperature for long periods, for instance 20 hours, it transforms into an ochre-coloured powder whose X-ray powder pattern coincides with that assigned $[1,2]$ erroneously to a non-existent $\beta-\mathrm{VTaO}_{5}$, stable above $885^{\circ} \mathrm{C}$. We have verified that this is a mixture of $\mathrm{VTa} 9 \mathrm{O}_{25}$ [8] and $\mathrm{V}_{2} \mathrm{O}_{5}$. We have shown that the compound described [1] as VNbO_{5} is quite possibly a mixture of $\mathrm{VNb}_{9} \mathrm{O}_{25}$ [8] and $\mathrm{V}_{2} \mathrm{O}_{5}$.

The TG curve of VTaO_{5} in air to $1000^{\circ} \mathrm{C}$ is a straight line, so the transformation of $\mathrm{VTaO}_{\text {s }}$ to the material described as $\beta-\mathrm{TaVO}_{s}$ occurs without weight loss according to the equation

$$
9 \mathrm{VTaO}_{5} \rightarrow 4 \mathrm{~V}_{2} \mathrm{O}_{5}+\mathrm{VTa}_{9} \mathrm{O}_{25}
$$

Characterization of the isomorphous series $V M_{m} O_{5 / 2(m+1)}$

In these two isomorphous series, materials with compositions $\mathrm{VNb}_{2} \mathrm{O}_{7.5}$, $\mathrm{VTa}_{2} \mathrm{O}_{7.5}, \mathrm{~V}_{3} \mathrm{Ta}_{17} \mathrm{O}_{50}$ and $\mathrm{VTa}_{9} \mathrm{O}_{25}$ had not been previously prepared [9]. The six materials obtained from the general composition $\mathrm{VM}_{\mathrm{m}} \mathrm{O}_{5 / 2(\mathrm{~m}+1)}$ crystallize in the tetragonal system. Unit-cell parameters and correlation factors given in Table 1 show that vanadium and tantalum form a tetragonal solid solution ranging from $\mathrm{Ta}: \mathrm{V}=2$ to $\mathrm{Ta}: \mathrm{V}=9$. Similar behaviour is shown by the vanadium and niobium samples.

Table 1 Unit-cell parameters and correlation r factors for tetragonal $\mathrm{VTa}_{\mathrm{ml}} \mathrm{O}_{5 / 2(\mathrm{~m}+1)}$

m	a / \AA	c / \AA	V / \AA^{3}
2	$15.6784(7)$	$3.8253(6)$	$940.3(1)$
5.6	$15.6808(9)$	$3.8260(9)$	$940.8(2)$
9	$15.684(1)$	$3.828(1)$	$941.7(3)$
	$r_{\mathrm{a}}=0.994$	$r_{\mathrm{c}}=0.956$	$r_{\mathrm{v}}=0.982$

Thermal study

When a hydrogen stream was used for reducing VMO_{s}, reduction was complete at about $650^{\circ} \mathrm{C}$, but the sample was kept at that temperature for 1 hour in order to ensure complete reaction. The reduction product was a black powder with an oxygen content of 4.3 for the niobium compound and very close to 4 for that of tantalum. The X-ray powder patterns of both residual were very similar and corresponded to the rutile-type compound VMO_{4}.

We also performed reduction of the compounds described as VNbO_{5} and β VTaO_{s}, which constitutes additional proof that these materials are not pure compounds but mixtures.

Figure 1 shows TG curves corresponding to reduction of VNbO_{5} (curve a), VTaO_{5} (curve b), and the 'compound' β - TaVO_{5} (curve c) carried out using pure hydrogen. The X-ray pattern of the residuum at $1000^{\circ} \mathrm{C}$ of curve c corresponds to a mixture of VTaO_{4} and different vanadium oxides with valency lower than 5. This result confirms that the material described as $\beta-\mathrm{VTaO}_{s}$ is a mixture. Reduction of the compound formulated as VNbO_{5} leads to a similar conclusion: it is actually mixture of $\mathrm{VNb}_{9} \mathrm{O}_{25}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$.

Fig. 1 TG curves of $\mathrm{VNbO}_{5}, \mathrm{VTaO}_{5}$ and the 'compound' $\beta-\mathrm{VTaO}_{5}$ in hydrogen stream

Fig. 2 TG curves for VNbO_{5} and VTaO_{5} in flowing hydrogen (5\%) and argon (95\%)

When the reduction of VMO_{5} was carried out using a mixture of hydrogen and argon, the compounds VMO_{4} were obtained with the same oxygen contents as those obtained using a hydrogen stream. In these conditions it was necessary to reach a higher temperature in order to assure complete reduction. Figure 2 shows the TG curves to $1000^{\circ} \mathrm{C}$ for VNbO_{5} (curve a) and VTaO_{5} (curve b).

Reduction of the tetragonal solid solutions was also studied. Figure 3 shows the TG curves of six members of the series $\mathrm{VM}_{\mathrm{m}} \mathrm{O}_{5 / 2(\mathrm{~m}+1)}$ carried out using a

Fig. 3 TG curves for the series $\mathrm{VM}_{m} \mathrm{O}_{5 / 2(m+1)}$ in hydrogen stream
hydrogen stream. Curves a, b and c allow us to establish that the reduction of $\mathrm{VNb}_{2} \mathrm{O}_{7.5}, \mathrm{VNb}_{17} \mathrm{O}_{50}$ and $\mathrm{VNb}_{9} \mathrm{O}_{25}$ may be described by the equations

$$
\begin{aligned}
\mathrm{VNb}_{2} \mathrm{O}_{7.5} & \rightarrow 3\left(\mathrm{~V}_{0.33} \mathrm{Nb}_{0.67} \mathrm{O}_{1.87}\right)+0.95 \mathrm{O}_{2} \\
\mathrm{~V}_{3} \mathrm{Nb}_{17} \mathrm{O}_{50} & \rightarrow 20\left(\mathrm{~V}_{0.15} \mathrm{Nb}_{0.85} \mathrm{O}_{1.89}\right)+6.10 \mathrm{O}_{2} \\
\mathrm{VNb}_{9} \mathrm{O}_{25} & \rightarrow 10\left(\mathrm{~V}_{0.1} \mathrm{Nb}_{0.9} \mathrm{O}_{1.96}\right)+2.70 \mathrm{O}_{2}
\end{aligned}
$$

X-ray analysis of samples taken at $1000^{\circ} \mathrm{C}$ from curves a, b and c, shows that non-stoichiometric phases are obtained with compositions $\mathrm{V}_{0.67} \mathrm{Nb}_{1.33} \mathrm{O}_{3.74}$, $\mathrm{V}_{0.30} \mathrm{Nb}_{1.70} \mathrm{O}_{3.78}$ and $\mathrm{V}_{0.2} \mathrm{Nb}_{1.8} \mathrm{O}_{3.92}$, respectively.

Curves d, e and f correspond to the reduction of $\mathrm{VTa}_{2} \mathrm{O}_{7.5}, \mathrm{~V}_{3} \mathrm{Ta}_{17} \mathrm{O}_{50}$ and $\mathrm{VTa} 9 \mathrm{O}_{25}$. As expected, X-ray diffraction patterns of samples taken at $1000^{\circ} \mathrm{C}$ from these curves show that the rutile-type phase $\mathrm{V}_{\mathbf{a}} \mathrm{Ta}_{2-\mathrm{g}} \mathrm{O}_{\mathrm{y}}$ is mixed with the starting material and very small amounts $\mathrm{Ta}_{2} \mathrm{O}_{5}$. This suggests that these Ta-containing materials are reduced at higher temperatures than those of Nb .

References

1 J. J. Brown, and F. A. Hummel, Trans. Brit. Ceram. Soc., 64 (1965) 419.
2 Joint Committee on Powder Diffraction Standards File, No. 19-1313.
3 H. Chahboun, D. Groult and B. Raveau, Mat. Res. Bull., 23 (1988) 805.
4 J. M. Amarilla, B. Casal and E. Ruiz-Hitzky, Mat. Letters, 8 (1989) 132.
5 L. M. Kovba and V. K. Trunov, J. Struct. Chem., 6 (1965) 224.
6 J. L. Waring and R. S. Roth, J. Res. Natl. Bur. Std., 69A (1965) 119.
7 W. Rüdorff and J. Märklin, Z. Anorg. Allg. Chem., 334 (1964) 142.
8 M. T. Casais, E. Gutiérrez-Puebla, M. A. Monge, I. Rasines and C. Ruiz Valero, J. Solid State Chem., 102 (1993) 261.
9 Submitted to the Joint Committee on Powder Diffraction Standards File.

Zusammenfassung - Es wird das thermische Verhalten verschiedener Oxide von pentavalentem V und Nb oder Ta in verschiedenen dynamischen Wasser-stoffatmosphären beschrieben. Frühere Untereschungen der durch Erhitzen eines Gemisches aus $\mathrm{V}_{2} \mathrm{O}_{5}$ und $\mathrm{M}_{2} \mathrm{O}_{5}(M=\mathrm{Nb}$, Ta) in Luft erhaltenen Phasen führten (i) zur erstmaligen Darstellung von VTaO_{5} aus beiden Oxiden, (ii) zum Nachweis der Existenz des Mischkristalles $\mathrm{VM}_{\mathrm{m}} \mathrm{O}_{5 / 2(\mathrm{~m}+1)}$ und (iii) zum Nachweis, daß die als NbVO_{5} und als $\mathrm{B}_{-2 \mathrm{TaVO}}^{5}$ beschriebenen Substanzen in Wirklichkeit Gemische aus $\mathrm{VM}_{9} \mathrm{O}_{25}$ und $\mathrm{V}_{2} \mathrm{O}_{5}$ sind. Die Reduktion von VMO5 ergibt ab 650 C eine Monophase VMO_{4} vom Rutil-Typ. Die Reduktion von $\mathrm{VM}_{2} \mathrm{O}_{7.5}, \mathrm{~V}_{3} \mathrm{M}_{17} \mathrm{O}_{50}$ und $\mathrm{VM}_{9} \mathrm{O}_{25}$ bei 1000 C führt nur für $M=\mathrm{Nb}$ zu einer nichtstöchiometrischen Monophase $\mathrm{V}_{\mathrm{a}} \mathrm{M}_{2-\mathrm{a}} \mathrm{O}_{\mathrm{y}}$.

